Matrix-Free Delassus Operations:
Scalable and Memory-Efficient Algorithms

Ajay Suresha Sathya', Louis Montaut!, Yann de Mont-Marin®, and Justin Carpentier!

Abstract—The Delassus matrix, closely related to the
operational-space inertia matrix, is a fundamental quantity in
robotics with applications in simulation, system identification,
and control. Traditional approaches compute and store this
matrix explicitly, either in sparse or dense form. In this work, we
depart from this convention by treating the Delassus matrix as
a matrix-free operator. We derive efficient algorithms with low
computational complexity that multiply the Delassus matrix or its
damped inverse by an input vector or matrix. Unlike approaches
based on explicit matrix construction, our method achieves a
linear memory footprint, making it scalable to problems with
thousands of constraints and suitable for execution on resource-
limited hardware. We implement these matrix-free operations
on top of the open-source Pinocchio library and evaluate their
performance against state-of-the-art methods that rely on explicit
matrix computation. Our benchmarks demonstrate substantial
speedups, ranging from 2x to over 400x, in contact-rich scenarios.

I. INTRODUCTION

Matrix-free implementations of linear operators are highly
beneficial, and often essential, when the explicit construction
of a matrix or its inverse is computationally prohibitive or
exceeds memory limits. Standard examples include iterative
solvers for large sparse linear systems, such as the conjugate
gradient method [1[]; the L-BFGS method [2] for matrix-
free Hessian approximation; automatic differentiation tech-
niques where Jacobian-vector and Hessian-vector products are
evaluated without explicitly forming the full matrices [3[];
and factor-graph-based algorithms for localization and map-
ping [4], [5]. In the context of robotics and poly-articulated
system simulation, the articulated-body algorithm (ABA) [6]—
[8]] is a classic example of a matrix-free algorithm. The joint-
space inertia matrix (JSIM) is never explicitly formed or
inverted using standard linear algebra routines. Instead, the
ABA leverages the kinematic tree structure and articulated-
body inertias to implicitly compute the inverse JSIM operator.

The Delassus matrix [9]-[11]], also known as the inverse
operational space inertia matrix, is a fundamental quantity in
robot control and simulation. It is a linear operator mapping
constraint forces to constraint accelerations (or impulses to ve-
locity changes), defined as A~! := JM~1JT, where M is the
JSIM and J is the constraint Jacobian. Explicitly computing
the Delassus matrix can require up to O(n® + m?n + mn?)
operations, where n is the number of degrees of freedom
(DOFs) and m is the number of constraints. Typically, the
Delassus matrix must also be factorized to solve for constraint

'nria and Département d’Informatique de 1’Ecole Normale Supérieure,
PSL Research University in Paris, 75013 Paris, France.

emails: |ajay.sathya@inria.fr] louis.montaut@inria.fr
marin @inria.fr| justin.carpentier @inria.fr,

yann.de-mont-

(a) (b) (© / (d)
/ . '1\\‘
7 =

© ® (g (h)
Fig. 1: Illustrating the contact scenarios benchmarked in Ta-

ble E] in Section

forces or impulses, incurring an additional O(m?) cost. For
the restricted case of kinematic trees with unary constraints
(i.e., constraints involving a single link without loop-closures),
existing efficient recursive algorithms [12], [13]] can compute
the Delassus matrix and its damped inverse explicitly in
O(n+m?) operations. However, even these optimal complex-
ity algorithms become computationally expensive for high-
DOF robots, such as humanoids, in contact-rich scenarios.
Furthermore, these recursive algorithms cannot handle the
loop-closure constraints that arise in closed-chain mechanisms
or during physical interaction with the environment.
Fortunately, many computationally intensive applications,
such as robotic simulation or whole-body control, only re-
quire matrix-vector products with the Delassus matrix or its
damped inverse. Prior work [14]], [15] has explored matrix-free
Delassus operators, but these often rely on maximal coordi-
nates and do not exploit the inherent articulated structure of
robots. Existing matrix-free methods for inverting the Delassus
operator [15]], [[16] are typically iterative, such as those based
on the Gauss-Seidel method, and can be slow to converge.
To address this, this letter introduces efficient matrix-free
algorithms for evaluating the Delassus operator and its damped
inverse. Our approach exploits the articulated structure of
robots and is applicable to systems with kinematic loops
and arbitrary n-ary constraints. Notably, the damped inverse
Delassus operator is computed via a direct method, requiring
no iterative solver. The primary contributions of this paper are:

1) Matrix-free Delassus operator. We propose a matrix-
free algorithm for the Delassus operator with O(n +m)
time and memory complexity, leveraging the articulated-
body algorithm (ABA).

mailto:ajay.sathya@inria.fr
mailto:louis.montaut@inria.fr
mailto:yann.de-mont-marin@inria.fr
mailto:yann.de-mont-marin@inria.fr
mailto:justin.carpentier@inria.fr

2) Matrix-free damped Delassus inverse operator. We
propose a matrix-free algorithm that exactly com-
putes the damped inverse of the Delassus operator for
mechanisms with arbitrary kinematic loops. By uti-
lizing the loop-constrained articulated-body algorithm
(LCABA) [17] and the matrix inversion lemma [18]], it
inherits a worst-case time complexity of O(n + m?d +
m?3) and memory complexity of O(n+m?), where d is
the depth of the mechanism’s spanning tree. In practice,
it exhibits O(n + m) complexity, as the worst case
arises only in unrealistic scenarios where most loops are
coupled via shared joints.

3) Efficient open-source implementation. We provide
an efficient C++ implementation of the proposed al-
gorithms in the widely used open-source PINOCCHIO
library [[19]. The code will be released upon conclusion
of double-blind review.

II. RELATED WORK

The Delassus matrix represents the projection of the inverse
joint-space inertia matrix onto the constraint space:

At =JMIE, (1)

where M 1is the joint-space inertia matrix (JSIM) and J. is
the constraint Jacobian.

As detailed in [20], the most straightforward method for
computing the Delassus matrix involves three steps: i) ex-
plicitly forming M and J., ii) computing the Cholesky fac-
torization M = LTL, and finally iii) computing A=! =
(J.L™1) (JCL_l)T. These operations result in a computa-
tional complexity of O(n3+n?m+mnm?). For kinematic trees
with unary constraints (excluding loop closures), Featherstone
proposed the LTL-OSIM algorithm [21f], which leverages
the branching-induced sparsity pattern of M, J., and L to
compute the Delassus matrix with a reduced complexity of
O(nd? + d*m + dm?), where d is the tree depth. The LTL-
OSIM algorithm was extended in [22] to handle kinematic
loops while continuing to exploit sparsity in M, J., and L.
This extension formulates the computation of the Delassus
matrix (and its damped inverse) as a sparse Cholesky de-
composition of the Karush-Kuhn-Tucker (KKT) system [23]]
associated with Gauss’s principle of least constraint [24]. It
achieves a worst-case complexity of O(nd? + n?m + nm?),
achieved for systems with large loops constituting o n joints.

In contrast to the joint-space methods above, recursive
algorithms exploit the articulated structure of robots to achieve
lower computational complexities. The first such algorithm,
KJR (Kreutz, Jain, and Delgado) [25], reduced the complexity
to O(n + dm?). A faster approach was proposed in [26] by
leveraging the extended-force propagator (EFP). The EFP was
further utilized in [27] to develop the EFP algorithm (EFPA),
achieving a complexity of O(n + dm + m?). The most recent
advancement is the PV-OSIMr algorithm [[13[], which attains
the optimal complexity of O(n + m?).

The algorithms discussed above, whether joint-space or
recursive, also require factorizing the Delassus matrix A~!

to solve for constraint forces or impulses during simulation,
which adds a computational cost of O(m?). The recently pro-
posed CABA-OSIMr algorithm [[12]] (restricted to kinematic
trees with unary constraints) addresses this by utilizing the
matrix inversion lemma [18] and the PV-OSIMr algorithm
to directly compute the damped Delassus inverse A,
(A1 —Hdm)_l with an optimal O(n + m?) complexity.
Computing the damped inverse is a standard technique for
ensuring numerical stability near constraint singularities and is
adopted in simulators such as MuJoCo [28], [29], Drake [30],
and Simple [31]].

While existing methods compute the Delassus matrix or its
inverse explicitly, they incur at least O(n + m?) complexity
even in the best-case scenario. However, contact simulation
algorithms only require matrix-vector products with these
operators, which can be evaluated more efficiently without
forming the matrices. Prior research [[14], [[15] into matrix-free
Delassus operators utilized maximal coordinates, which treat
all joints as constraints and result in large, sparse systems.
These methods generally do not exploit the articulated struc-
ture of the robot. Furthermore, existing matrix-free inverse
operators [[15]], [16] often rely on iterative Gauss-Seidel-based
methods, which are first-order, inexact, and sensitive to ill-
conditioning. In contrast, the matrix-free operators introduced
in this letter exploit the robot’s articulated structure and avoids
including even spanning-tree joint constraints in the Delassus
operator. Our damped Delassus inverse operator is a direct,
non-iterative, second-order algorithm that provides greater
robustness to ill-conditioning.

III. PRELIMINARIES
This section provides the necessary background on the
Delassus matrix and relevant rigid-body dynamics algorithms.
A. Constrained dynamics and the Delassus matrix

Letq e Q,v € TqQ ~ R™ and » € R" denote generalized
coordinates, velocities and accelerations, respectively. When
the system is subject to constraints, the resulting accelerations
and constraint forces A € R™ due to applied torques 7T are
obtained by solving the coupled system of linear equations:

M(q)P +c(q,v) =ST7 + Jo(q) T A,
Jc(q)’} = QAdes)

(2a)
(2b)

where M € S7, is the joint-space inertia matrix (JSIM),
c € R" is the generalized forces due to Coriolis, centrifugal,
and gravity effects, S € {0,1}"=*™ is a selection matrix
for actuated joints, J. € R™*" is the constraint Jacobian,
and ages € R™ is the desired constraint acceleration (typically
—J.v). Since M is positive definite and invertible, solving for
U in (2a) and substituting it into (2b) yields:

A_l(q)A = _g(q7VaT7ades)7 (3)

where g = ages — Jov—J,M™! (ST —c). For brevity, variable
dependencies are omitted hereafter. A~! is positive definite if
J. has full row rank.

The Delassus matrix can be singular in the presence of
redundant constraints or at kinematic singularities, and is typ-
ically ill-conditioned near singularities. A common practical
remedy is using the damped inverse of the Delassus matrix,
defined as:

Ap= R+ M J]) 7, @)

where & € S7', is a diagonal matrix. Solving for constraint
forces using Ag provides a regularized solution that is well-
defined in singular cases. However, this introduces artificial
compliance, each diagonal element of R can be interpreted
as a stiffness parameter for the corresponding constraint.
The proximal algorithm approach to contact simulation [31]]
leverages shifted regularization to satisfy constraints exactly
(down to numerical tolerance) by iteratively removing this
compliance while still benefiting from the numerical stability
of the damped inverse.

Remark 1. While the above discussion focuses on traditional
acceleration-level constraints, the Delassus matrix and its
damped inverse can also be defined in the context of velocity-
level constraints, such as those encountered in impulse-based
contact dynamics [29], [31]].

B. Loop-Constrained Articulated-Body Algorithm (LCABA)

This subsection reviews the Loop-Constrained Articulated-
Body Algorithm (LCABA) [17], a low-complexity constrained
dynamics algorithm supporting general kinematic loop con-
straints. This algorithm is adapted in Sec. [V| to derive the
damped Delassus inverse operator.

A kinematic mechanism can be represented by a connectiv-
ity graph, an undirected graph where nodes and edges denote
links and joints, respectively. A spanning tree of this graph is a
subgraph containing all nodes and a subset of edges such that
the subgraph is connected and acyclic. The edges omitted from
the spanning tree correspond to cut-joints, which are imposed
via loop-closure constraints. The constrained dynamics of the
resulting system, comprising the spanning tree and the loop-
closure constraints, can be formulated at the link level as
a quadratic program (QP) using Gauss’s principle of least
constraint [[17]:

. e s 1 T T T.
m11})1211ze Z {2ai Hia;,—f, a,— 71, v, (5a)
€S
subject to a; = a.) + Siv; +ap, 1 €S8, (5b)
ZKéai:ke, ee&, (50
i€L,
Kiv; =&, ieJ, (5d)
where a; € MS, H;, € 16 ~ Sf_+, and f; € F% denote

the i*® link’s spatial acceleration, inertia, and resultant spatial
force, respectively (see [20, Chap. 1] for notation details). The
terms 7; € R™ and ©; € R™ are the *" joint’s actuation
torque and joint acceleration, respectively. Eqs. (5b) and
impose constraints from spanning-tree joints and cut-joints,
respectively. 7(i) indexes the parent link of the i*" link in the
spanning tree, S; € M®*"i is the i*® joint’s motion subspace

matrix, and a ; € MO is the bias acceleration. S and £ are
ordered sets that index spanning-tree joints and cut-joints. For
i,j € S,i < jif i = w(j). Note that S N E = . Given e
in £, L. is the set indexing links constrained by the e** cut-
joint, and for ¢ in L., Ké € R™e*6 ig its motion constraint
matrix on the 7" link, and k., € R™« is the desired constraint
acceleration. Finally, Eq. (5d) imposes additional joint-level
constraints [C; € R™i*" with & € R™i, where J C S and
hence 7 NE = 0.

Remark 2. The joint-level constraints in Eq. (5d) can also
be modeled as link-level motion constraints by noting that
v, = S,f (ai — A — abyi), where S;r is the Moore-Penrose
pseudoinverse of S;. However, treating joint-level constraints
separately allows for more efficient computation.

Solving the QP above Eq. (3) is equivalent to solving
the constrained dynamics in Eq. (). Link-level cut-joint
constraints in Eq. (5c) are typically converted to generalized
coordinates in Eq. via the substitution a; = J; + jiu,
where J; € R6%"i is the " link’s kinematic Jacobian matrix.
LCABA solves Eq. (3) via non-serial dynamic programming,
yielding a recursive algorithm that exploits the mechanism’s
spanning-tree structure. For kinematic trees or mechanisms
with only external loops (where every loop includes the ground
link), LCABA reduces to the constrained articulated-body
algorithm (CABA) [[12], which runs in O(n + m) time. For
internal loops, the worst-case complexity is O(n+dm?+m?),
occurring only when loops are significantly coupled. In prac-
tice, loops are typically localized, and the algorithm exhibits
O(n + m) performance [17].

IV. MATRIX-FREE DELASSUS OPERATOR

This section derives an efficient matrix-free algorithm to
evaluate the Delassus operator A~! = J.M~1J[in O(n+m)
time and O(n) memory, and presents it in an algorithmic form.

The Delassus operator is a linear operator that maps con-
straint forces A to constraint accelerations a..,

a.=AtN)=JM I (N). (6)

This mapping can be viewed as the composition of three linear
operators: J. o M~! o J[. Each constituent operator can be
evaluated without explicitly forming its corresponding matrix.
Accordingly, the evaluation of the Delassus operator is split
into three steps:

1) Resolve the constraint forces to joint-space torques:

T.=JI (N).

2) Solve for the resulting joint accelerations:
v=M"(r,.).

3) Compute the accelerations in constraint space:
a. = J. (D).

A. Resolving constraint forces in joint-space

The matrix-free linear operator in the first step (Item [I)),
J. (), is implemented using the link-level constraint for-
mulation from Eq. (5). The constraint force vector X is a

. L . T
concatenation of individual constraint forces A’ = [A(U

for « € £U J. For a constraint e € &, the spatial force
acting on link ¢ € L. due to the constraint force A, is
KéTAe [32]. Once these spatial forces are accumulated, the
resulting joint torques are computed via a recursive backward
sweep through the spanning tree. This procedure is identical
to the backward force sweep in the Recursive Newton-Euler
Algorithm (RNEA) [33]. The constraint force due to joint-
level constraints ICZT A; for i € J, is directly added to the
corresponding joint torque.

Alg. [I] details the matrix-free implementation. It runs in
O(n+m) time and memory: line [f| accumulates spatial forces
in O(m) time (assuming a constant upper-bound for number
of links per constraint |£.|), and the backward sweep (lines
executes in O(n) time and memory.

Algorithm 1 Matrix-free evaluation of J. ()

Require: A\ ; S, 7, S, &, L, K, J, K
1: Initialize f; < 06, 7.; < 0y, fori € S
2: forec & do
3: for i € L. do > Loop over links in e™" constraint
4 f, + £, + Ké—r/\e > Contribution from e™ constraint

> Loop over constraints
th

force
5. for ¢ in J do > Add joint-level constraint torques
6: Tci<—Tci+ICZTAi
7: for i € S;eversea dO > Backward sweep
8: Tei $ Tei + S;r f; © Joint torque due to constraint forces
9: if 7(¢) # 0 then
10: fw(i) — fﬂ(i) +f; > Propagate wrench to parent
return 7.

B. Solving for resulting joint-accelerations

The second operator (Item , M~ (1.), maps joint torques
to joint accelerations. This is implemented in a matrix-free
manner by adapting the standard articulated-body algorithm
(ABA) [20] to omit the computation of bias accelerations and
forces (the ¢ term in Eq. (2a)). The procedure is detailed in
Alg. 2| Each line performs O(1) operations per link, resulting
in O(n) time and memory complexity.

Algorithm 2 Matrix-free evaluation of M ! (T.)

Require: 7.; S, n, S, H
1: Initialize f; < Og, H* = H; fori € S
2: for i € S;eversea O > Backward sweep
3: u; < Tei — SZ-Tfi > Net joint torque
4: U, = HZ-ASi; D; = S;UZ—; Compute Di_1
5: if (i) # 0 then
6 fri) < £y +fi + U;D; 'u;

7

Hy + Hiy + HP = UD7UT
8: for i € S do > Forward sweep
9: U; +— Di_l (ui — U;aﬂ(i))
10: a; < ag(y) + S;U;
return o

C. Computing constraint accelerations

The final operator (Item , J. (¥), maps joint accelerations
to constraint accelerations a., which concatenates individual
constraint accelerations a/ = [a;} for o« € J UE. This is
implemented by propagating link accelerations via a forward
kinematic sweep and transforming them into the constraint
space using Eq. (5¢). The procedure is detailed in Alg. [3] The
forward sweep (lines requires O(n) time and memory,
while computing constraint accelerations (line [6) requires
O(m) time. The total complexity is O(n + m).

Algorithm 3 Matrix-free evaluation of J, ()

Require: v ; S, 7, S, &, L, K, J, K
1: Initialize a.o ¢ Oy, fora € EU T, a; < 0g fori € S
2: for i € S do > Forward Kinematic sweep
3 a; < ag() + S;v;
4: fore € £ do

5: for i € L. do

6

7

8

> Loop over constraints

h

> Loop over links in e constraint
: Ao < aq + Kla;

: for 1 € J do

: retua;% ;Kiyi

> Extract joint constraint accelerations

D. Implementation Optimizations

A naive sequential execution of the modular operators
involves four recursive sweeps: one backward in Alg. [I] two
in Alg. 2] and one forward in Alg. [3] The implementation can
be optimized to require only two sweeps in total as follows:

Merging backward sweeps. Alg. [I] converts spatial forces
into joint torques 7., which Alg. [2] then utilizes. These can
be merged by using the spatial forces f; aggregated from
constraints (Alg. [T} lines 2-4) directly as initial values for
f; in the ABA backward sweep (Alg. |2} line 2), bypassing the
explicit computation of ..

Merging forward sweeps. Alg. [3| re-propagates link acceler-
ations a; that are already computed during the forward sweep
of Alg. 2] This redundancy is eliminated by using the a,
values from Alg. P2] directly for the constraint acceleration
computation (Alg. [3] line 6).

V. MATRIX-FREE DAMPED DELASSUS INVERSE
OPERATOR

This section presents our matrix-free algorithm for evalu-
ating the damped inverse of the Delassus matrix. We begin
by reviewing the matrix inversion lemma and its application
to the damped Delassus inverse, followed by the derivation of
the matrix-free operator and its algorithmic implementation.

A. Matrix inversion lemma

The matrix inversion lemma (MIL) [18]], also known as the
Sherman-Morrison-Woodbury formula, states that for invert-

ible matrices A and C:

(A+UCV) ' =A —A U (C +vATD) VAT
(7N

Applying this lemma to }he damped Delassus inverse,
Ap=(R'+JM71J]) 7, yields:

Ap=R—RJ.(M+JIRJ)JIR. (8)

The term Mg := M+J. RJ. corresponds to a modified JSIM,
representing the system inertia augmented by regularization
terms from the constraints. This structural insight was previ-
ously exploited in the cABA-OSIM algorithm [[12] to explicitly
compute the damped Delassus inverse for kinematic trees with
unary constraints in O(n + m?) operations.

In many applications, the explicit computation of Ag is
unnecessary. We instead consider the damped inverse as a lin-
ear operator mapping constraint accelerations a. to constraint
forces A. Substituting Eq. (]E[) into A = Aga, leads to the
operator form:

A=[R—RJ.(M+J RJ)JR] (a.).
| ——

Mg

€))

B. Matrix-free evaluation of the damped Delassus inverse
operator

Evaluating Eq. (9) requires solving the linear system Mp.
Unlike the standard JSIM M, which can be solved via ABA,
Mp, includes the constraint regularization term. We therefore
adapt the LCABA algorithm [17], which is designed to solve
for this modified JSIM in a recursive, matrix-free manner.

The evaluation of the damped Delassus inverse operator is
performed in four steps:

1) Compute the “compliant” constraint forces Ap =

Ra, and resolve them into joint-space torques:
TR = J CT (A R)-
2) Solve for the modified joint accelerations:

. -1
Ur=Mp" (Tr).

3) Compute the resulting constraint-space accelerations:
aRp = JC (I)R)

4) Evaluate the final constraint forces: A = Ap — Rag.

C. Algorithmic derivation of the matrix-free damped Delassus
inverse operator

Steps 1, 3, and 4 in the procedure above are straightfor-
ward to implement in a matrix-free manner. The operation
Agr=Ra, in Step 1 and A = Ar — Rap in Step 4 are
computed as element-wise scaling since R is a diagonal
matrix. The operators J, (Ag) in Step 1 and J.. () in Step 3
can readily re-use the matrix-free algorithms from Section [[V]
(Alg[T] and Alg. 3] respectively).

The only remaining operation is Step [2} which involves
solving the modified JSIM Mr = M + J RJ.. This is
implemented in a matrix-free manner by adapting the LCABA
algorithm [[17]], a generalization of the ABA algorithm han-
dling such modified JSIMs. The aspects of LCABA that
address bias forces and accelerations are omitted here, as they

are not required. We list the adapted algorithm in Alg. [for
completeness, where S¢ is the spanning-tree joint elimination
ordering chosen by LCABA. The computations corresponding
to the ABA algorithm are printed in brown color. For a detailed
description of LCABA, we refer readers to [17]].

Algorithm 4 Matrix-free evaluation of the expression
Mp" (Tr) adapted from LCABA [17]

Require: 7z ; R, S, 8¢, 7, &, 8, L, K, T, K
1: Initialize f[' — 0(;,]I,j_,' = I]i-, M — {} forie S

Process constraints: update inertia and neighbors

2: forec & do
for i € L. do
H;;+ H;; + KI"R.K!

for je L.if j #ido

3 h
4:
5:
6: if H; ; is undefined then
7:
8:

> Loop over links in ™ constraint

> Add constraint inertia

H; j < Ogxe
Ni <+ NiU{j}
9: Hz'_’]' — Hiy]' + KéTRng
10: for i € J do > Initialize inertias due to joint constraints
11: D; + /CZTRJCZ

> Update neighbor sets

Backward Sweep
12: for i € S¢ do
13: U; ¢ TR — S,-/Tfi > Net joint torque
14: U;=H;;S;:; D; < D; + Si‘ U;; Compute D;l
15; P, =15 —UD;'S]
16: for j e M;U{r (i)} do

> Projection matrix

> Update connections

17: /\G — /\fj — {z} > Remove *" link from neighbors
18: for k e ;U {r(i)} if k # j and k ¢ N, do
19: Hkyj < Ogx6
20: ./\/'j — ./\fJ U {k} > Update neighbor set
21: for j € \V; do > Update coupling inertias and forces
22: Hy g Hag) g+ Hig Pl
23: f, — f, + Hih,-SiDi_lui
24: H]] — H]‘,j — HZ]SZD,L_lstHLTJ
25: for k € N; if k > j do
26: Hyj « Hyj— H; 15D ST H,;
27 Hjp < H’I/ > Re-symmetrize
28: if 7T(Z) € N; then > Re-symmetrize if parent is neighbor
2: HA e HA)+ (Hia P
30: if 7 (i) # 0 then
31: fﬂ(,) — fw(/) +f; — (/‘TiD:lu,;
32: Hﬁ(,)ﬁ(,) < HWU)-”U) =+ H,,,,j — L‘ZD?IL‘T,T
Forward Sweep
33 for i € S5 .4 do
34: for j € \V; do > Account for neighbor accelerations
35: u; < u; — (Hi,jSi)T a;
36: I./,Lg]‘ — Drl (u; - UZTaﬂ(,i))
37: a; < ax(j) + SiVR;
return 'y

For kinematic trees with unary constraints, LCABA reduces
to the constrainedABA [12]] algorithm and is guaranteed
to run in O(n + m) time and memory. For systems with
loops, the algorithm inherits the worst-case complexity of

O(n + dm? + m?) in time and O(n + dm?) in memory from
LCABA, which can occur when the majority of the loops are
coupled. However, in practice, loops are localized, and the
algorithm typically runs in O(n + m) time.

D. Optimized implementation

Similarly to the matrix-free Delassus operator in Section|[[V]
the implementation can be optimized by merging the operators.
The backward sweep in Step 1 can be merged with the LCABA
backward sweep in Step 2 by directly initializing the spatial
forces f; in Alg.] with the spatial forces resulting from Ap in
Alg. |1} thus avoiding the explicit computation of joint torques
T r. Similarly, the forward sweep in Step 3 can be eliminated
by using the link accelerations a; already computed during
the LCABA forward sweep in Step 2 to directly evaluate the
constraint accelerations ag.

VI. BENCHMARKS AND DISCUSSIONS
A. Implementation details

The proposed matrix-free Delassus operator and its damped
inverse operator have been implemented in C++ within the
widely-used open-source rigid-body dynamics library PINOC-
CHIO [19]. The operators are evaluated across various robotic
platforms and contact scenarios with differing degrees of
freedom (DoFs) and constraint dimensions. Realistic contact
configurations are generated by simulating these platforms in
the SIMPLE physics simulator [31ﬂ and capturing contact
configurations at specific time instances. Benchmarks were
conducted on a laptop with an Intel® Core™ Ultra 7 165H
CPU running Ubuntu 22.04 LTS. The implementation was
compiled using CLANG 21.1.1 with optimization flags —03
—-DNDEBUG -march=native.

The matrix-free algorithms are compared against state-of-
the-art explicit matrix-computation methods based on the LTL-
OSIM algorithm [21]], [22], whose efficient implementation
already exists in PINOCCHIO. Since our benchmarks include
contact-induced internal loops, we do not compare against
optimal O(n + m?) algorithms such as PV-OSIMr [13] and
cABA-OSIM [12], as they are restricted to ground contacts.
Extending these methods to internal loops is non-trivial and
remains a subject for future research. Furthermore, we do not
explicitly benchmark against maximal coordinate-based sparse
solvers [15]], as dedicated algorithms exploiting articulated
structures are known to be generally more efficient [20].
However, a benchmark involving a stack of boxes is included,
which will illustrate the performance gap; here, our imple-
mentation naturally reduces to a maximal coordinate approach
since the system consists of independent free-floating objects
without articulated joints.

B. Benchmarking on robots with multiple contacts

Benchmarking results are summarized in Table [I, which
compares the computation times (in microseconds) of the
proposed matrix-free methods against the explicit LTL-OSIM

Uhttps://github.com/Simple-Robotics/Simple

baseline [22]]. Google benchmark is employed to profile
timings up to 100,000 iterations to obtain stable timings. To
benchmark memory footprint, we report both the number of
cache lines accessed (in thousands) and the absolute memory
footprint (in kB). The former is profiled via Callgrincﬂ by
simulating a large cach that can hold the entire simulation
environment to count unique cache lines read/written, and the
latter is computed by aggregating the sizes of all state variables
involved in the implementation.

The benchmark scenarios (visualized in Fig. [T) consist of
the quadruped robot Unitree Go2, Cassie (a bipedal robot with
internal loops), the humanoid robot Unitree G1, a stack of
boxes, a pyramid of boxes, and multiple robots falling on
the pyramid. Robot DoFs, the number of 3D point contacts
(n¢), and total constraint dimension (n..,) are also reported.
Each pair of contacting surfaces are modeled with up to 4
contact points. The rows corresponding the scenarios where
joint friction is enabled are shaded in gray, which increases
the constraint count by the robot’s DoF.

Across all scenarios, the matrix-free operators consistently
outperform the explicit baseline. This is expected, as they
evaluate matrix-vector products instead of constructing
the full Delassus matrix. The performance gap widens as
the number of constraints increases, demonstrating better
scalability. Note that the Delassus matrix is dense in all the
considered scenarios due to interconnectedness via contacts.
In the largest scenarios, the matrix-free methods achieve a
speedup of nearly ~400x over the baseline.

Efficient operator re-evaluation: Many applications, such as
ADMM-based frictional contact solvers, repeatedly apply the
same operator to different vectors or updated damping factors.
Our implementation is designed for efficient re-evaluation
by storing invariant intermediate terms (e.g., articulated-body
inertias) and re-using them during subsequent re-evaluations.
The final six columns of Table [l detail the costs for re-applying
the Delassus operator (A~1) and its damped inverse (Ag)
to a new vector, as well as re-evaluating and applying the
inverse for a new damping value (A’;). For small problems, the
explicit method is significantly faster for the forward operator
re-evaluations as it re-uses the pre-computed dense matrix
to perform a matrix-vector product. However, the matrix-
free approach exhibits higher performance as the number of
constraints grows. Similar trends are observed for inverse
operator re-evaluation or when the damping factor is updated
(Alz), with the advantage of the explicit method in small
problems considerably narrowing due to the increased cost of
solving or refactorizing a linear system. For robots with many
contacts or when joint friction is enabled, the matrix-free re-
evaluation (A’;) always outperforms the explicit baseline.

https://github.com/Simple-Robotics/Simple

TABLE I: Computation time (in us). Cache lines accessed (in thousands) and memory footprint (in kB) are reported in
dedicated columns for the Delassus operator and its inverse on various robotic platforms and scenarios (Go2: n, = 18, Cassie:
n, = 32, Gl: n,, = 35, Boxes: n,, = 180, Pyramid+Robots: n, = 285). The rows corresponding to the joint friction-enabled
scenarios are shaded in grey. The proposed Matrix-Free method is compared against the LTL-OSIM baseline, and the final
six columns detail the cost of re-evaluating the Delassus operator (A1), the damped inverse operator (Ar) and the damped
inverse operator with a new damping factor ((A’;)) on a new input vector.

Delassus Operator (A~1) Inverse Delassus Operator (AR) Re-evaluation timings in ps breakdown
Scenario Ne Meon | Matrix-Free (ours) Explicit (LTL-OSIM) | Matrix-Free (ours) Explicit (LTL-OSIM) Matrix-Free (ours) Explicit (LTL-OSIM)
time cache mem ‘ time cache mem | time cache mem ‘ time cache mem A1 Agp A'R ‘ A1 Agp Aiq
Go?2 standing 4 12 | 155 07 26 | 311 19 33 | 164 15 29 | 365 12 32 [[0369 038 1.112]0.027 0.135 0.402
Go2 standing 4 24 | 161 07 28 | 464 27 47 | 163 16 32 595 16 43 [/ 0399 0421 1.171]0.052 0305 13
Go? fallen 9 27 | 174 07 38 |58 30 62 |242 22 42 | 763 19 56 || 0515 0591 1911 [0.083 0371 1.671
Go2 fallen 10 42 | 177 07 45 | 810 43 97 | 244 23 49 1200 26 81 | 0567 062 1.88 |0.147 0.601 3.791
Cassie 8 24 | 294 1.0 53 | 927 29 84 |426 23 69 | 1040 46 88 || 077 0854 3.444 0052 030 134
Cassie 8 50 [3.07 13 57 [1600 45 121 | 451 24 72 2172 78 143 [/ 0.805 0.894 3.604 | 0.20 0.718 5.798
G1 standing 8 24 366 13 91 [937 59 195|358 31 110 | 1060 110 235 || 0919 0906 2426 |0.051 0297 1.327
Gl standing 8 53 [39 13 94 |1853 80 254 | 383 3.1 117 2500 161 334 || 1.01 100 27 |0.226 0.796 6.486
G1 fallen 23 69 | 427 1.0 47 [2598 20 75 | 622 24 62 |378 30 80 143 146 51 [0379 1.08 1148
Gl fallen 25 101 | 441 1.0 50 |4209 33 107 | 7.33 24 65 7040 55 127 || 145 162 6.06 | 0.89 1.0 29
Stack of boxes 120 360 | 947 19 241 | 1214 526 1400 |31.38 6.7 269 | 2482 1107 1850 || 522 7.58 30.58 | 951 141 1257.1
Box pyramid 288 864 | 14.88 3.4 755 | 5925 3475 9694 | 65.20 159 826 | 23092 941.6 15530 || 10.7 155 647 | 949 874 168224
Pyramid + Robots 108 324 | 2034 63 473 | 1511 2109 4533 |37.12 17.9 730 | 2430 530.7 5630 || 6.84 872 32.02| 736 126 9066
construction of the Delassus matrix. Consequently, recursive
1o * low-complexity algorithms [12]], [13]], [32] that avoid forming
w
3 the JSIM have an advantage over the LTL-OSIM. However,
g 5l N these methods are currently restricted to ground contacts and
= cannot accommodate the internal loops common in contact-
rich scenarios. Generalizing them to arbitrary loops is non-
0b—1 \ \ — trivial and remains a subject for future research. Even with

6 8 10 12
Number of DoFs (1)

such extensions, these explicit methods are unlikely to outper-
form the proposed matrix-free approach for single evaluations

—a— MF Delassus —=— Explicit Delassus
- 4- MF Inverse - »- Explicit Inverse

because these algorithms do not utilize the early-elimination
strategies that make LCABA-based operators efficient. Fur-

(a) Three-link swimmer.
(b) Computation time vs. 1.

Fig. 2: Benchmarking computational scaling on a swimmer
robot with an increasing number of links. The matrix-free
methods scale linearly, unlike the explicit methods.

C. Benchmarking the computational scaling

The computational scaling of the proposed matrix-free
methods is further evaluated on a swimmer robot (see Fig.
with an increasing number of links, as shown in Fig.
A three-link swimmer has n, = 5 DoFs due to its planar
floating base and two revolute joints; each link makes two
3D point contacts with the ground, resulting in n, = 6 and
Neon = 18. As expected, the proposed matrix-free methods
exhibit linear scaling with respect to the number of DoFs,
whereas the explicit matrix methods scale superlinearly.

D. Discussions

The LTL-OSIM baseline is additionally slowed by the re-
quirement to explicitly store and factorize the JSIM during the

Zhttps://github.com/google/benchmark

3https://valgrind.org/docs/manual/cl-manual htm]

4Used the command valgrind --tool=callgrind
——-instr-atstart=no --cache-sim=yes --D1=33554432,8,64

thermore, they exhibit O(m?) complexity, whereas our matrix-
free approach scales linearly.

For scenarios with few constraints relative to robot DoFs,
existing explicit methods can be competitive or even faster
when amortized over many evaluations (leveraging CPU vec-
torization) or when the matrix can be reused without re-
factorization as seen in the previous benchmarks.

Unlike general sparse-solver approaches [15]], our methods
exploit the inherent poly-articulated structure to significantly
reduce computational overhead. For instance, the G1 robot (30
links) can be modeled in maximal coordinates with 180 DoFs
and 150453 = 203 constraints. This dimension is comparable
to the stack-of-boxes scenario (180 DoFs, 360 constraints),
where our method reduces to a maximal coordinate approach
due to the lack of joint articulations. The matrix-free inverse
operator requires only 7.33 us for the G1 robot versus 31.38 us
for the boxes, demonstrating the efficiency gains achieved by
leveraging the robot’s articulated structure.

VII. CONCLUSION

This letter introduced efficient matrix-free algorithms for
computing the Delassus operator and its damped inverse for
articulated rigid-body systems with arbitrary kinematic loops
and contact constraints. By leveraging recursive rigid-body
dynamics, our algorithms achieve linear memory and time
complexity in practice. Extensive benchmarking confirms that

https://github.com/google/benchmark
https://valgrind.org/docs/manual/cl-manual.html

this reduced complexity translates to significant speedups
compared to state-of-the-art explicit matrix methods, ranging
from 2x to nearly 400x depending on the problem scale.

While explicit methods may remain competitive for systems
with very few constraints relative to the number of degrees
of freedom, our matrix-free approach is vastly superior in
contact-rich scenarios. It is also more efficient when down-
stream applications require frequent updates to damping pa-
rameters, as it avoids explicit matrix re-factorizations required
by explicit methods. The generality and efficiency of these
algorithms facilitate their integration into physics engines for
real-time control and simulation of complex robotic systems,
particularly on resource-limited hardware. This integration will
be the focus of our future work.

ACKNOWLEDGMENT

This work was supported by the European Union’s
Horizon Europe research and innovation programme
through a Marie Sktodowska-Curie Postdoctoral Fellowship
(101211945 — ExTRAORDiNary), the ARTIFACT project
(GA 10.101165695) and through the AGIMUS project
(GA 1n0.101070165), and by the French government under
the management of Agence Nationale de la Recherche
through the project INEXACT (ANR-22-CE33-0007-01),
the “PR[AIJRIE-PSAI” AI Cluster (ANR-23-IACL-0008),
under the France 2030 program with the references Organic
Robotics Program (PEPR O2R), the PIQ program under the
management of Agence de Programme du Numérique, Views
and opinions expressed are those of the author(s) only and
do not necessarily reflect those of the European Union or the
European Commission. Neither the European Union nor the
European Commission can be held responsible for them.

REFERENCES

[1] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of research of the National Bureau of
Standards, vol. 49, no. 6, pp. 409-436, 1952.

[2] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1,
pp- 503-528, 1989.

[3] A. Griewank and A. Walther, Evaluating derivatives: principles and
techniques of algorithmic differentiation. SIAM, 2008.

[4] F. Dellaert, M. Kaess, et al., “Factor graphs for robot perception,”
Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1-139, 2017.

[5] L. Carlone, A. Kim, T. Barfoot, D. Cremers, and F. Dellaert, “Slam
handbook: From localization and mapping to spatial intelligence,” 2025.

[6] R. Featherstone, “The calculation of robot dynamics using articulated-

body inertias,” Int. J. Robot. Res., vol. 2, no. 1, pp. 13-30, 1983.

A. Vereshchagin, “Computer simulation of the dynamics of complicated

mechanisms of robot-manipulators,” Eng. Cybernet., vol. 12, pp. 65-70,

1974.

H. Brandl, R. Johanni, and M. Otter, “A very efficient algorithm for the

simulation of robots and similar multibody systems without inversion

of the mass matrix,” IFAC Proceedings Volumes, vol. 19, no. 14, pp.

95-100, 1986.

[9] E. Delassus, “Mémoire sur la théorie des liaisons finies unilatérales,” in
Annales scientifiques de I'Ecole normale supérieure, vol. 34, 1917, pp.
95-179.

[7

—

[8

=

[10]
(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]
[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

B. Brogliato and B. Brogliato, Nonsmooth mechanics. Springer, 1999.
C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic haptic
rendering of interacting deformable objects in virtual environments,”

vol. 12, no. 1, ;:ip 3647, 2005.
A. S. Sathya and J. Carpentier, “Constrained articulated body dynamics

algorithms,” IEEE Trans. Robot., vol. 41, pp. 430449, 2025.

A. S. Sathya, W. Decré, and J. Swevers, “Pv-osimr: A lowest order
complexity algorithm for computing the delassus matrix,” IEEE Robot.
Autom. Lett., vol. 9, no. 11, pp. 10224-10231, 2024.

D. Baraff, “Linear-time dynamics using lagrange multipliers,” in Pro-
ceedings of the 23rd annual conference on Computer graphics and
interactive techniques, 1996, pp. 137-146.

A. Tasora and M. Anitescu, “A matrix-free cone complementarity
approach for solving large-scale, nonsmooth, rigid body dynamics,”
Computer Methods in Applied Mechanics and Engineering, vol. 200,
no. 5-8, pp. 439453, 2011.

J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for
solving contact dynamics,” IEEE Robot. Autom. Lett., vol. 3, no. 2, pp.
895-902, 2018.

A. S. Sathya and J. Carpentier, “Constrained articulated body algorithms
for closed-loop mechanisms,” IEEE Trans. Robot., pp. 1-20, 2026.

J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,” The Annals
of Mathematical Statistics, vol. 21, no. 1, pp. 124-127, 1950.

J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library: A fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in 2019 IEEE/SICE International Symposium on
System Integration (SII). 1EEE, 2019, pp. 614-619.

R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
——, “Exploiting sparsity in operational-space dynamics,” Int. J. Robot.
Res., vol. 29, no. 10, pp. 1353-1368, 2010.

J. Carpentier, R. Budhiraja, and N. Mansard, “Proximal and sparse
resolution of constrained dynamic equations,” in Proc. Robot., Sci. Syst.,
2021.

J. Nocedal and S. Wright, Numerical optimization.
& Business Media, 2006.

C. F. GauB, “Uber ein neues allgemeines grundgesetz der mechanik.”
1829.

K. Kreutz-Delgado, A. Jain, and G. Rodriguez, “Recursive formulation
of operational-space control,” Int. J. Robot. Res., vol. 11, no. 4, pp.
320-328, 1992.

K.-S. Chang and O. Khatib, “Efficient recursive algorithm for the
operational space inertia matrix of branching mechanisms,” Advanced
Robotics, vol. 14, no. 8, pp. 703-715, 2001.

P. Wensing, R. Featherstone, and D. E. Orin, “A reduced-order recursive
algorithm for the computation of the operational-space inertia matrix,”
in Proc. IEEE Int. Conf. Robot. Autom. 1EEE, 2012, pp. 4911-4917.
E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in Proc. IEEE/RSJ Int. Conf. Int. Robots. Syst. 1EEE,
2012, pp. 5026-5033.

E. Todorov, “Convex and analytically-invertible dynamics with contacts
and constraints: Theory and implementation in mujoco,” in Proc. IEEE
Int. Conf. Robot. Autom. 1EEE, 2014, pp. 6054-6061.

R. Tedrake and the Drake Development Team, ‘“Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

J. Carpentier, Q. L. Lidec, and L. Montaut, “From Compliant to Rigid
Contact Simulation: a Unified and Efficient Approach,” in Proc. Robot.,
Sci. Syst., Delft, Netherlands, July 2024.

A. S. Sathya, H. Bruyninckx, W. Decré, and G. Pipeleers, “Efficient
constrained dynamics algorithms based on an equivalent 1qr formulation
using gauss’ principle of least constraint,” IEEE Trans. Robot., vol. 40,
pp. 729-749, 2024.

J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-line computational
scheme for mechanical manipulators,” Journal of Dynamic Systems,
Measurement, and Control, vol. 102, no. 2, pp. 69-76, 06 1980.

Springer Science

https://drake.mit.edu

	Introduction
	Related work
	Preliminaries
	Constrained dynamics and the Delassus matrix
	Loop-Constrained Articulated-Body Algorithm (LCABA)

	Matrix-Free Delassus Operator
	Resolving constraint forces in joint-space
	Solving for resulting joint-accelerations
	Computing constraint accelerations
	Implementation Optimizations

	Matrix-Free Damped Delassus Inverse Operator
	Matrix inversion lemma
	Matrix-free evaluation of the damped Delassus inverse operator
	Algorithmic derivation of the matrix-free damped Delassus inverse operator
	Optimized implementation

	Benchmarks and Discussions
	Implementation details
	Benchmarking on robots with multiple contacts
	Benchmarking the computational scaling
	Discussions

	Conclusion
	References

